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Introduction

« Why atmospheric mining?
 Uninhabited Aerial Vehicles (UAVSs), cruisers for
weather reconnaissance, monitoring, etc.

 Engineissues.
— Gas core engines, closed cycle.
— Nuclear ramjets and rockets

 Resource capturing: helium 3, hydrogen, helium.
« UAV mission planning and options
 Observations

 Concluding remarks.
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In Situ Resource Utilization (ISRU)

In Situ Resource Utilization uses the materials
from other places in the solar system to sustain
human exploration

Using those resources reduces the reliance on
Earth launched mass, and hopefully reduces
mission costs

There are powerful capabilities to free humans
from Earth

www.nasa.gov s
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Why Atmospheric Mining?

« Benefits:

— Large amount of matter to mine (hydrogen and
helium 3)

— Potentially easier than mining regolith (dust) and
rock

— Larger reservoir of materials not readily available
In regolith (and in a gaseous state)

« Potential drawbacks

— Dipping deep into the gravity well of planets is
expensive for propulsion systems

— Lifetime of systems

— Repetitive maneuvers

— Cryogenic atmospheric environments
— Long delivery pipelines
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Uranus

JPL
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Neptune and Moons
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Outer Planet Atmospheres

~75 K ~70 K
100 kPa Molecular H, 100 kPa
~2000 K Helium + Ices ~2000 K
10 GPa lces 10 GPa
Mixed with hydrogen?
Mixed with rocks?
~ ) ~B000 K
HE{?D{?PB RU{ZI{H;’ BOD GCPa
Uranus Neptune

Tristan Guillot, “Interiors of Giant Planets Inside and
QOutside the Solar System.”
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Uranus —
Outer Planet
Atmospheres
and

Wind Speeds
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Gemini NIRI 1.6 um (H) Image of Uranus

Uranus —
Outer Planet
Atmospheres
and

Wind Speeds

Token on 2011-0ct-26, ot 8:33 UT
L. Sromovsky and P. Fry, Univ. of Wisconsin—Madison

Sromovsky, L., 2010, Investigating Atmospheric Change on Uranus and Neptune, Award number NNGO05GF00G.
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UAV Configurations: Weather (3a/4)
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UAV Configurations: Weather (3a/4)
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Figure B3. Neptune cloud features (Voyager, Hubble, Ref. 27)
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Orbital Velocities:
10 km altitude

Planet Delta-V (km/s) Comment
Jupiter 41.897 BIG
Saturn 25.492 BIG
Uranus 15.053 More acceptable

Neptune 16.618 More acceptable

www.nasa.gov 14
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Cruiser Mining (1)
Combined Miner and Aerospacecraft

Cruiser: mining aerospacecraft (a)

% Uranus atmospheric mining altitude

Cruiser:
departs
atmosphere
(b) \1/

Uranus atmospheric interface

L

O o

) Uranus orbit
U

Fuel storage facility

Earth orbit
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Mining Scenarios and OTVs

« Using cruiser aerospacecraft for mining in the
atmosphere at subsonic speeds.

 Cruiser aerospacecraft then ascends to orbit,
transferring propellant payload to orbital
transfer vehicles (OTV).

« OTV will be the link to interplanetary transfer
vehicle (ITV) for return to Earth.

« Moon bases for a propellant payload storage
option was investigated.

www.nasa.gov s
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AMOSS GCR Designs

CLOSED-CYCLE GAS CORE NUCLEAR ROCKET
INTERNALLY-COOLED —2
-

TRANSPARENT WALL

NUGLEAR FUEL INJECTION —

DUCT V— :
NUCLEAR FUEL REGION HYDROGEN PROPELLANT
REGION
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Gas Core Design and Analysis Overview

« Total aerospacecraft vehicle delta-V is 20 km/s.
« Single stage aerospacecraft.
« (Gas core Isp values = 1800 and 2500 seconds

* Vehicles mass estimated over a broad range of
dry masses.

 Dry mass (other than tankage) = 1,000, 10,000,
100,000, and 1,000,000 kg.

— Typical gas core dry mass = 80,000 to 200,000 kg.
« Tankage mass = 2% and 10% of propellant mass.

« Comparative case: solid core NTP Isp =900
seconds.

www.nasa.gov s
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Gas core, Isp = 1,800 s, Tankage = 2% Mp

Nuclear Aerospacecraft,
OC Gas Core; 1,800-s Isp; 20-km/s delta-V capability;
1,000-kg payload
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Aerospacecraftinitial mass (kg)

AMOSS NTP Designs:
Solid Core and Gas Core

Nuclear Aerospacecraft:
Dry mass = 100,000 kg, Tankage mass =2% Mp
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Time for 3He Capture at Uranus

3He Mining time (days)
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Time for 3He Capture at Neptune

3He Mining time {days)
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Resource Capturing — Hydrogen, Helium 4, -
and Helium 3 Comparison, Uranus

Uranus' Atmosphere
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AMQOSS, Hydrogen Production at Uranus

AMOSS 3He mining time and hydrogen capturing requirements,
3He = 1.52e”-5, Mdry = 100,000 kg
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AMOSS Constellation
Atmospheric Exploration Missions (1/2)

 AMOSS helium 3 (3He) mining produces large
amounts of additional hydrogen and helium.

* Given the fact that large amounts of hydrogen and
helium are available, new missions can be
conceived for vehicles in the outer planet
atmosphere(s).

* Fleets of such aerospacecraft (ASC) vehicles could

be fueled with AMOSS produced hydrogen and
helium.



AMOSS Constellation
Atmospheric Exploration Missions (2/2)

* Potential missions include:

— Aircraft for weather data gathering, weather
warnings.

— Deep diving subsonic “aircraft” probes that can
go to low altitudes with 10X, 20X, 30X
atmospheric pressures (a la scoopers).

— Launching of GPS-ish vehicles to improve mining
(ASC) communications.

— Delivery of samples to orbital assets.



Exploration UAV size ranges

Probe design Mass (MT)
Free fall 1to10
Parachute 1to10
Rocket boost 10 to 100
Rocket return 10 to 1,000
Long duration, subsonic 10 to 1,000
Aerospacecraft (mining) 100 to 10,000



UAV Configurations: High Speed (4a/4)

Nuclear Ramjet Flyer
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UAV Configurations: High Speed (4b/4)
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UAV Configurations: High Speed (4c/4)

UAV mass, initial mass, final mass (kg)
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Gemini NIRI 1.6 um (H) Image of Uranus

Uranus —
Outer Planet
Atmospheres
and

Wind Speeds

Token on 2011-0ct-26, ot 8:33 UT
L. Sromovsky and P. Fry, Univ. of Wisconsin—Madison

Sromovsky, L., 2010, Investigating Atmospheric Change on Uranus and Neptune, Award number NNGO05GF00G.
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Planetocentric Latitude, °N
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UAV Mission Planning:
Weather Phenomena, Uranus
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ULS latitude (deg)

UAV Mission Planning:
Aurora Phenomena, Uranus

F. Herbert, B.R. Sandel | Planetary and Space Science 47 (1999) 1119-1139
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UAV Configurations: Weather (3a/4)
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Figure B3. Neptune cloud features (Voyager, Hubble, Ref. 27)



UAV Mission Planning: Weather Phenomena:
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AMOSS UAV Mission Profiles
(Multiple Targets Assessed, One Way)




AMOSS UAV Mission Profiles
(Multiple Targets Assessed, Round Trip)




AMOSS UAV Miission Profiles
(Multiple Targets Assessed, Two Hemispheres, One Way)
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AMOSS UAV Mission Profiles
(Multiple Targets Assessed, Two Hemispheres, Round Trip)
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Travel Time Across Planet: Uranus

UAV travel time: Uranus = 100-120
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Travel Time Across Planet: Neptune

Travel time (hours)

UAV travel time: Neptune #100.0-120.0
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Time for Storm Circumnavigation

Time for circumnavigation of outer planet atmospheric storms,
standoff distance = 100 km
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Resource Capturing — Observations (1/2

 Helium 3 is the primary gas for capturing by
aerospacecraft cruisers.

* While capturing helium 3, the cruiser also has the
potential for capturing very large amounts of
hydrogen and helium 4 (which comprise nearly
100% of the atmosphere).

 Resource capturing of hydrogen and helium 4
can lead to fueling fleets of smaller but
specialized exploration and exploitation vehicles.

 New concepts for weather monitoring, cloud
exploration, and deep-diving aircraft fueled by
these large resources are possible.

www.nasa.gov s
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Resource Capturing — Observations (2/2

Uninhabited Aerial Vehicle (UAV) and drone
options may use nuclear ramjets or rockets.

Sampling of the atmosphere and investigation of
short- and long-term storm and weather related
phenomena are options.

Mission planning could allow for surveying many
targets per UAV flight.

Nuclear thermal propulsion reactor life may limit
nuclear ramjet based aircraft to less than 40
hours.

Rocket vehicles that deliver the ramjets to storm
locations may allow for rapid responses to
unique storms and other phenomena.

www.nasa.gov 44
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Concluding Remarks

« Atmospheric mining can open new frontiers.

« (Gas core engines can reduce the vehicle initial mass
by 72% to 80% over solid core NTP powered vehicles.

« AMOSS helium 3 capturing leads to processing huge
amounts of gas for powering unique UAVs and
atmospheric missions.

 Nuclear thermal propulsion reactor life may limit
nuclear ramjet aircraft to less than 40 hours of
operation.

 Rocket vehicles that deliver the ramjets vehicles to
storm locations may allow for rapid responses to
unique atmospheric phenomena.

 Let’s go to the stars, as quickly as possible.
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Neptune

JPL
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Time for Storm Circumnavigation

Time for circumnavigation of outer planet atmospheric storms,
standoff distance = 100 km
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AMOSS UAV Mission Operations




AMOSS UAV Concept of Operations

AMOSS UAV Concept of Operations (CONOPS)

UAYV arrives in atmosphere (Earth delivery)
UAYV fueling from aerospacecraft / tanker
UAYV departs vicinity of aerospacecraft / tanker
UAYV performs rocket arrival maneuver
UAV arrives at target 1
UAV cruises at speeds for science measurements
UAYV departs vicinity of target 1
UAV cruises to target 2
UAV arrives at target 2
UAV cruises at speeds for science measurements
UAYV departs vicinity of target 2
At end of target investigation(s):
UAYV can perform cruise to return to the aerospacecraft / tanker

UAYV can perform terminal maneuver, ending mission



AMOSS UAV Concept of Operations

UAYV arrives in atmosphere (Earth delivery)
UAV fueling from aerospacecraft / tanker
UAV departs vicinity of aerospacecraft / tanker
UAV performs rocket arrival maneuver
UAV arrives at target 1
UAV cruises at speeds for science measurements
UAV departs vicinity of target 1
UAV cruises to target 2
UAV arrives at target 2
UAV cruises at speeds for science measurements
UAV departs vicinity of target 2
At end of target investigation(s):
UAV can perform cruise to return to the aerospacecraft / tanker

UAV can perform terminal maneuver, ending mission



